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Abstract. Using an approach first advocated by Gannon and recent results of Meeks, 
Simon and Yau on the existence of compact minimal surfaces, some new results are 
obtained relating non-trivial spatial topology to the occurrence of singularities in space- 
time, For example, it is shown that if V 3  is a contracting body with mean-convex boundary 
homeomorphic to a two-sphere in a space-time M4 obeying appropriate curvature and 
causality assumptions, then either V3 is a three-cell or M4 is non-space-like geodesically 
incomplete. 

1. Introduction 

Gannon (1975, 1976), Lee (1976) and Lindblom and Brill (1980) have obtained 
results which, in one view, establish restrictions on the spatial topology of non-singular 
(i.e. geodesically complete) space-times. These results by and large require a number 
of stringent global assumptions (the assumption of completeness being one such 
condition). More recently, Frankel and Galloway (1982) have obtained restrictions 
on the spatial topology from purely local assumptions. However, because of the local 
nature of the hypotheses, these results do not allow an interpretation which is allowed 
by the aforementioned results, namely, that non-trivial spatial topology leads to the 
occurrence of singularities. As an example consider the following result of Gannon 
(1975). 

Theorem (Gannon 1975). Let M 4  be a space-time which satisfies the null convergence 
condition and admits a Cauchy surface V 3  which is regular near infinity. If V 3  is 
non-simply connected then M4 is null geodesically incomplete. 

(The assumption that V 3  be regular near infinity requires that it be asymptotically 
flat in some appropriate sense.) 

The purpose of this note is to present some new results of this type which improve 
various aspects of previous results. Most importantly, we obtain results which do not 
require that M 4  be globally hyperbolic or, in particular, that V 3  be Cauchy. These 
conditions are also avoided in the statements of theorems 2.1 and 2.2 in Gannon 
(1975). Unfortunately, Gannon’s proofs of these theorems rely crucially on an 
observation (p 2366, paragraph 2 of his paper) which we have recently discovered to 
be false. The results presented here recover in spirit some aspects of Gannon’s theorem 
2.1, and improve other aspects. Our main results apply to a space-like hypersurface 
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V 3  (perhaps with boundary) which need not be edgeless or acausal. Furthermore, 
the assumption of non-simple connectivity is substantially weakened. Basically, it is 
only required that the topology of V 3  be non-Euclidean. On the other hand, it will 
be necessary to impose certain extrinsic conditions on V 3 .  

The approach taken here is that advocated by Gannon (1975, p 2367). Under the 
assumption that a suitable space-like hypersurface V 3  has non-trivial topology, we 
make use of the recent results of Meeks et a1 (1982) concerning the existence of 
compact minimal surfaces to obtain a compact minimal surface W 2  in V 3 .  Under 
suitable extrinsic conditions on V 3  it is shown that W 2  is a closed trapped surface 
and, hence, by standard singularity theorems, one is able to conclude that space-time 
is non-space-like geodesically incomplete. 

2. The results 

By a body V 3  we mean a compact three-dimensional Riemannian manifold with 
smooth boundary a V  (which need not be connected). We will say that a V  is mean- 
convex if its mean curvature with respect to the outer normal is non-negative, 
H ( a V )  3 0. (We are using the sign convention currently popular in relativity in which 
H 3 0 implies that the outer normal is diverging on the average at each point of aV. 
Gannon (1975) and Lee (1976) have considered a related but different convexity 
condition.) 

Let M4 denote an arbitrary space-time, by which we mean a smooth four- 
dimensional time oriented Lorentzian manifold having signature (-+++). We will 
consider only those bodies V 3  embedded as space-like submanifolds of M 4  carrying 
the induced metric. 

To establish the existence of a closed trapped surface it will be necessary to impose 
certain extrinsic conditions on V 3 .  Let 2 be the future pointing unit normal vector 
field along a space-like hypersurface V 3  (perhaps with boundary). Introduce the 
second fundamental form (or expansion tensor) 0 of V 3  as follows, 

@(X,  Y)=(VxZ, Y) 

for vectors X, Y tangent to V, where (,) is the space-time metric and V is the associated 
Levi-Civita connection. (See e.g. Frankel (1979) for a discussion of the kinematical 
and geometrical significance of 0.) At any point of V 3  let 8 be the trace of the linear 
map X+V,Z associated with the bilinear form 0; for any extension of Z to a 
time-like unit vector field in a space-time neighbourhood of V, 8 = div 2. If 8 < 0 
along V 3  then, at each point p of V, V is contracting on the average over all directions 
in V at p .  This condition occurs in several of the singularity theorems of general 
relativity (see e.g. Hawking and Ellis 1973, theorem 4, p 272). In these results V 3  
is globally defined (e.g. is Cauchy or compact without boundary). In the main results 
to be presented here it will be necessary to impose a more stringent contraction 
assumption which, however, need only hold locally, i.e. hold on a body V 3 .  It will be 
required that the body V 3  be contracting in all directions. 

A space-like hypersurface V 3  is said to be contracting in all directions or non- 
expanding in all directions if @ is negative definite or negative semi-definite, respec- 
tively, at each point of V 3 .  (Note: if X is a unit tangent vector to V 3  which is extended 
by making it invariant under the normal geodesic flow then @(X,  X )  = d/dslwll, where 
s is proper time and I!X(l= (X ,  X)’”.)  
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The following lemma gives an interesting geometric realisation of closed trapped 
surfaces in space-time. Recall that a smooth surface W 2  in V 3  is said to be minimal 
if its mean curvature vanishes. 

Lemma. Let V3cM4 be a space-like hypersurface (possibly with boundary) which 
is contracting in all directions. Let W2 be a compact minimal surface in V3. Then 
W 2  is a closed trapped surface in M 4 .  

Proof. Each sufficiently small piece of W 2  admits a smooth non-vanishing unit normal 
N tangent to V 3  (although there may not exist such a non-vanishing normal defined 
globally along W’). Let 2 be the unit time-like future pointing normal to V3. Then 
the equation 

K , = Z * N  

defines locally two non-vanishing null vector fields orthogonal to W 2 .  Introduce the 
two null expansion tensors (or null second fundamental forms) ,Y+ by 

X*(X, Y )  = (VxKa, Y ) ,  

where X and Y are tangent to W 2 .  To show that W 2  is trapped it suffices to show 
that Tr ,y* < 0, i.e. that the two families of null geodesics issuing orthogonally from 
W 2  in the directions K ,  and K- are converging. (By Tr x+ we mean the trace of the 
associated linear transformation X + VxK,.) 

With respect to an orthonormal basis { e l ,  e2}  of the tangent space of W 2  at a given 
point, 

Tr X+ = C (V$+, ea) = C (VeolZ e,> f C (VeaN, e a )  
2 2 2 

a = l  a = l  a = l  

2 

a = l  
= C @(ea,ea)*HH<O, 

since 0 is negative definite and H = mean curvature of W 2  = 0. 

Meeks et ul (1982) have recently obtained some definitive results concerning the 
existence of compact minimal surfaces in Riemannian three-manifolds. We draw from 
their results only what is needed in the present study. Recall that a handlebody is a 
diffeomorphic copy of a body in R3 which is bounded by a smooth surface of genus 
g. It is worth keeping in mind that the boundary of a handlebody must be connected, 
and a handlebody whose boundary is topologically a two-sphere must be a three-cell. 

Theorem (Meeks, Simon, Yuu).  Let V 3  be a body with mean-convex boundary. If 
V 3  is not a handlebody then V 3  contains a compact minimal surface W 2 .  

The two previous results, together with the Penrose singularity theorem (see 
Hawking and Ellis 1973, theorem 1, p 263), yield the following singularity result. 

Theorem 1 .  Let M4 be a space-time which admits a non-compact Cauchy surface 
and satisfies the null convergence condition, Ric(K, K )  = Ri,KiK’ a 0 for all null vectors 
K .  Suppose that V 3  is a body contracting in all directions with mean-convex boundary. 
If V 3  is not a handlebody then M4 is future null geodesically incomplete, 
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Proof. By the results of Meeks, Simon and Yau, V 3  contains a compact minimal 
surface W 2 .  By the lemma, W 2  is a closed trapped surface. By the Penrose singularity 
theorem, M 4  is future null geodesically incomplete. 

Remarks 
( 1 )  The hypotheses of theorem 1 are satisfied in the black hole region of the 

Schwarzschild solution. With respect to the standard Schwarzschild coordinates r, t ,  
8,q5, one can find bodies (or, in this case, ‘wormholes’) of the form r = f ( t ) ,  -T s t s T, 
with all the requisite properties. (Recall that t is a space-like coordinate and r is a 
time-like coordinate in the black hole region.) In particular, since the boundary of 
such a body consists of two disjoint two-spheres, it is not a handlebody. We note, 
however, that the surfaces r =constant do not meet all the requirements. Although 
these surfaces are contracting in directions tangent to the two-spheres t = constant, 
they are expanding along the longitudes 8 = constant, q5 =constant. In fact, for 
m < r < 2m, the mean expansion of each of these surfaces is positive. 

(2) The assumption that V 3  be contracting in all directions can be replaced by 
the slightly weaker assumption that it be non-expanding in all directions provided it 
is assumed that the curvature tensor obeys the generality condition: 
K ‘ K d K ~ , R b ~ , d ~ e K f l  # 0 at some point along each future directed null geodesic 7) issuing 
from V3, where K = K “ &  is the tangent to 77. Indeed, in this case, one can still 
establish the occurrence of a focal point to W 2  along each future directed null geodesic 
issuing orthogonally from W 2  (assuming, by contradiction, that M 4  is future null 
geodesically complete), as is needed in the proof of the Penrose singularity theorem. 

(3) Let M=Minkowski space and let V be the body described by r = 
- ( 1 + x 2 + y 2 + z 2 ) ” 2 ,  x 2 + y 2 + z 2 s 1 .  This example shows that theorem 1 is false if 
the assumption that V 3  not be a handlebody is dropped. 

In fact, by restricting attention to bodies having boundaries which are topologically 
two-spheres, theorem 1 immediately yields the following. 

Corollary 2. Assume M4 satisfies the null convergence condition and admits a 
non-compact Cauchy surface. Suppose that V3 is a body contracting in all directions 
having a mean-convex boundary which is homeomorphic to a two-sphere. Then, 
either V 3  is a three-cell or M4 is future null geodesically incomplete. 

The following result applies to space-like hypersurfaces without boundary. 

Corollary 3. Assume M4 satisfies the null convergence condition and admits a 
non-compact Cauchy surface. Let V 3  c M4 be a space-like hypersurface contracting 
in all directions such that V 3  = 

( 1 )  Vi is a body having mean-convex boundary aVi which is topologically a 
two-sphere, and 

(2) vi c vi+* -avi+,. 
Then either V 3  is homeomorphic to R3, or M 4  is future null geodesically incomplete. 

Vi, where, for each i, 

We remark that V 3  need not be edgeless or acausal. 

Proof. If some V,  is not a three-cell then, by theorem 1 ,  M4 is future null geodesically 
incomplete. Suppose, then, that each Vi is a three-cell. Then Vi -aVi is an open 
three-cell and V 3  = (Vi - a  Vi). But a topological space which is an increasing 
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union of open three-cells must itself be an open three-cell (see Brown 1961). Thus, 
V 3  is homeomorphic to R3. 

By calling upon the Hawking-Penrose singularity theorem (see Hawking and Ellis 
1973, theorem 2, p 266) and strengthening the curvature assumption somewhat, we 
can replace the assumption of the existence of a non-compact Cauchy surface by the 
chronology condition. 

Theorem 4.  Consider a space-time M4 which satisfies the null and time-like conver- 
gence conditions, the generic condition and the chronology condition. Suppose that 
V’ is a body contracting in all directions with mean-convex boundary. If V 3  is not 
a handlebody then M 4  is non-space-like geodesically incomplete. 

Proof. Similar to theorem 1.  

Although the statements are omitted here, theorem 4 implies the obvious analogues 
of corollaries 2 and 3. Furthermore, remark 2 following theorem 1 applies to theorem 
4, as well. 

It would perhaps be worthwhile investigating to what extent the results presented 
here rely on the contraction assumption. The results of Lee (1976) and Gannon 
(1975), although they only apply to globally hyperbolic space-times, suggest that such 
extrinsic conditions may be substantially weakened. 

References 

Brown M 1961 Proc. Amer. Math. Soc. 12 8 1 2 4  
Frankel T 1979 Grauitationai curuature (San Francisco: Freeman) 
Frankel T and Galloway G 1982 Math. Zeit. 181 395-406 
Gannon D 1975 J. Math. Phys. 16 2364-7 
- 1976 Gen. Rei. Grav. 7 219-32 
Hawking S W and Ellis G F R 1973 The large scale structure of the universe (Cambridge: CUP) 
Lee C W 1976 Commun. Math. Phys. 51 157-62 
Lindblom L and Brill D R 1980 Comments on the topology of  nonsingular stellar models in Essays in general 

Meeks W, Simon Land Yau S-T 1982 Ann.  Math. 116 621-59 
relativity ed F J Tipler (New York: Academic) 


